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Abstract

Computing in the life sciences has undergone a transformative evolution, from early computational
models in the 1950s to the applications of arti�cial intelligence (AI) and machine learning (ML) seen
today. This paper highlights key milestones and technological advancements through the historical
development of computing in the life sciences. The discussion includes the inception of computational
models for biological processes, the advent of bioinformatics tools, and the integration of AI/ML in
modern life sciences research. Attention is given to AI-enabled tools used in the life sciences, such as
scienti�c large language models and bio-AI tools, examining their capabilities, limitations, and impact
to biological risk. This paper seeks to clarify and establish essential terminology and concepts to
ensure informed decision-making and e�ective communication across disciplines.

The views and opinions expressed within this manuscript are those of the authors and do not
necessarily re�ect the views and opinions of any organization the authors are a�liated with.

Executive Summary

The integration of computing technologies into the life sciences has revolutionized the �eld, enabling
unprecedented advancements in biological research and applications. This manuscript traces the
historical milestones and technological advancements that have shaped this transformative journey.

The early days of computing in the life sciences saw the use of primitive computers for population
genetics calculations and biological modeling in the 1950s. This period marked the rise of
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computational biology, with computers becoming indispensable for protein crystallography and the
determination of three-dimensional protein structures.

The 1960s and 1970s witnessed signi�cant developments, including the shift from protein to DNA
analysis, driven by the advent of DNA sequencing methods. Dynamic programming algorithms for
sequence alignment and pioneering methods for inferring phylogenetic trees from DNA sequences
emerged during this time.

The 1980s and 1990s were pivotal, characterized by parallel advancements in molecular biology and
computing. Gene targeting techniques, the polymerase chain reaction (PCR), and the emergence of
bioinformatics software suites propelled the �eld forward. The completion of the Haemophilus
in�uenzae genome in the mid-1990s ushered in the genomic era, culminating in the publication of the
human genome at the turn of the century.

The last two decades have seen the integration of arti�cial intelligence (AI) and machine learning (ML)
into the life sciences, revolutionizing data analysis, drug discovery, and personalized medicine. AI
models, from early expert systems to modern deep learning architectures, have enhanced our ability
to predict protein structures, analyze genomic data, and design novel biological entities.

The manuscript delves into the various categories of AI-enabled tools used in the life sciences,
focusing on large language models (LLMs) and biological design tools (BDTs). LLMs, such as GPT and
BERT, have been adapted for the life sciences domain, giving rise to specialized models like scienti�c
LLMs (Sci-LLMs), protein LLMs (Prot-LLMs), and genomic LLMs (Gene-LLMs). These models excel at
tasks such as processing scienti�c literature, predicting protein structures and functions, and
analyzing genomic data.

BDTs, on the other hand, aid in the design of proteins, viral vectors, and other biological agents.
Protein structure prediction tools, like AlphaFold and RoseTTAFold, have revolutionized the �eld by
drastically reducing the time required to determine protein structures. Other subcategories of BDTs
include protein sequence design tools, small molecule design tools, vaccine design tools, and genetic
modi�cation tools, each serving speci�c purposes in biological research and applications.

The manuscript also highlights the importance of benchmarking and evaluating AI models in the life
sciences. Bloom’s taxonomy and frameworks like SciEval and KnowEval are used to assess the
capabilities of LLMs across di�erent cognitive levels and scienti�c knowledge domains. Speci�c
benchmarks for Sci-LLMs, Prot-LLMs, Gene-LLMs, and multimodal Sci-LLMs are discussed,
emphasizing the need for rigorous evaluation to ensure the reliability and e�ectiveness of these tools.

While the integration of AI in the life sciences has enabled rapid progress, it also presents potential
risks and limitations. Inaccurate outputs from AI models, stemming from biased or incomplete
training data, can misguide researchers and waste valuable resources. The potential misuse of AI in
creating harmful biological agents raises signi�cant biosecurity concerns. Ethical considerations, such
as data privacy, informed consent, and algorithmic bias, must be addressed to ensure responsible
and bene�cial use of AI in the life sciences.

Looking ahead, the manuscript underscores the need for more comprehensive benchmarks that
assess AI models’ performance in real-world applications and their ability to adapt to evolving
scienti�c knowledge. Techniques like red teaming, blue teaming, and violet teaming are proposed to
build resilient AI systems that minimize harm and maximize bene�t. The integration of Machine
Learning Security Operations (MLSecOps) is also highlighted as a crucial step in ensuring the safety
and security of AI models in the life sciences.



In conclusion, the integration of computing technologies into the life sciences has transformed the
�eld, enabling unprecedented advancements in biological research and applications. From the early
days of computational modeling to the sophisticated AI-driven tools of today, this journey has been
marked by historical milestones and technological breakthroughs. As we move forward, harnessing
the power of AI, cloud computing, and other emerging technologies will continue to drive innovation,
o�ering new solutions to complex biological problems and improving human health. However,
navigating the challenges and ethical considerations associated with AI in the life sciences will be
crucial to ensure its responsible and bene�cial use.

Introduction

Computing technologies have become indispensable to life scientists, changing how research is
conducted and expanding the scope of scienti�c discovery. The history of computing in the life
sciences is marked by signi�cant milestones that have advanced research, including early algorithmic
approaches to the application of arti�cial intelligence (AI) and machine learning (ML). Early uses of
computers in the 1950s for population genetics calculations and the pioneering work of Alan Turing in
biological morphogenesis set the stage for subsequent developments. Over the following decades,
computational biology evolved from basic protein structure analysis to complex genomic studies,
driven by advancements in DNA sequencing and computing.

Today, the terms AI, ML, deep learning, and large language models (LLMs) are often used
interchangeably in the life sciences. Although these terms are related, they each have distinct
meanings (Figure 2). AI broadly refers to machines designed to mimic human intelligence. ML is a
subset of AI focused on algorithms that improve through experience. Deep learning is a subset of ML
involving neural networks with many layers that can learn from vast amounts of data, and LLMs, such
as GPT (Generative Pre-trained Transformer) models like ChatGPT, are a speci�c type of deep learning
that excel in understanding and generating human-like text. By processing and analyzing biological
data at unprecedented scale and speeds, these technologies have advanced �elds such as
bioinformatics, structural biology, and genomics. Understanding distinctions among AI-related
nomenclature is crucial as technology development accelerates. Decisions about funding, regulation,
new product development, and the implementation of new technologies rely on an accurate
understanding of what these technologies can and cannot do. A nuanced understanding of the
capabilities and limitations of AI, ML, LLMs and other computational tools can help to correctly
estimate their potential and e�ectively utilize valuable resources.

This paper provides an overview of historical context, current applications, and future directions of
computing in the life sciences. By explaining key terms, concepts, and timelines, we aim to bridge the
knowledge gap between practitioners and stakeholders, fostering an environment for progress that
supports scienti�c innovation and public bene�t outcomes.

Computers, Algorithms and the Internet

1950s and 1960s: Early computers and algorithms

Computers were used in the early 1950s for population genetics calculations [1]. The inception of
computational modeling in biology coincides with the origins of computer science itself. British
mathematician and logician Alan Turing, often referred to as “the father of computing”, used primitive
computers to implement a model of biological morphogenesis (the emergence of pattern and shape
in living organisms) in 1952 [2]. At about the same time, a computer called MANIAC was used for



measuring speculative genetic codes; it was originally built for weaponry research at the Los Alamos
National Laboratory in New Mexico [3].

Computers were used for the study of protein structure by the 1960s, and other increasingly diverse
analyses. These developments marked the rise of the computational biology �eld, stemming from
research focused on protein crystallography, in which scientists found computers indispensable for
carrying out laborious Fourier analyses to determine the three-dimensional structure of proteins [4,5].

In addition to advances in determination of protein structures through crystallography, the �rst
sequence of protein, insulin, was published [6,7]. More e�cient protein sequencing methods, such as
the Edman degradation technique [8], enabled sequencing 15 di�erent proteins over a decade [9].
COMPROTEIN, one of the �rst bioinformatics softwares developed in the early 1960s, was designed to
overcome the limitations of Edman sequencing [10]. In an e�ort to simplify the handling of protein
sequence data for the COMPROTEIN software, a one-letter amino acid code was developed [11]. This
one-letter code was �rst used in the Atlas of Protein Sequence and Structure [12], the �rst biological
sequence database, laying the groundwork for paleogenetic studies.

Development of methods to compare protein sequences followed. The Needleman-Wunsch algorithm
[13], the �rst dynamic programming algorithm developed for pairwise protein sequence alignments,
was introduced in the 1970s. Multiple sequence alignment (MSA) algorithms followed in the early
1980s. Progressive sequence alignment was introduced by Feng and Doolittle in 1987 [14]. The MSA
software CLUSTAL, a simpli�cation of the Feng-Doolittle algorithm [15] was developed in 1988. It is still
used and maintained to this day [16].

1970s: From protein to DNA analysis

The deciphering of all 64 triplet codons of the genetic code in 196817 fueled a desire to e�ciently
determine the sequence of DNA that existed into the 1970s. This desire led to the development of
cost-e�cient DNA sequencing methods, such as the Maxam-Gilbert and Sanger sequencing
techniques in the mid-1970s [6,7,17]. With this new ability to generate DNA sequence data, a
paradigm shift from protein analysis to DNA analysis occurred in the late 1970s. Concurrently,
concerns over recombinant DNA research led to safety protocols established during the 1975
Asilomar conference [18].

New DNA sequencing techniques resulted in signi�cantly more data to be analyzed, a task at which
computation could help. The �rst software dedicated to analyzing Sanger sequencing reads was
published in 1979 [19]. DNA sequences began to be utilized in phylogenetic inference with pioneering
methods like maximum likelihood for inferring phylogenetic trees from DNA sequences [20]. Several
bioinformatics tools and statistical methods were developed following this work. The adoption of
Bayesian statistics in molecular phylogeny in the 1990s was inspired by this [21] and is still commonly
used in biology today [22]. Yet, numerous computational limitations needed to be overcome during
the latter half of the 1970s to expand the utilization of computing in the life sciences, especially in
DNA analysis. The subsequent decade proved instrumental in addressing these challenges.



Figure 1: The history of parallel advancements in computing and the life sciences: A timeline of major milestones.

1980s: Simultaneous advances in computing and biology

Parallel advancements in biology and computing propelled bioinformatics forward during the 1980s
and 1990s. Molecular techniques like gene targeting and ampli�cation, using enzymes like restriction
endonucleases and DNA ligases, laid the groundwork for genetic engineering [18]. The polymerase
chain reaction (PCR) transformed gene ampli�cation, while innovations like Taq polymerase and
thermal cyclers optimized the process [23].

Computing accessibility surged with microcomputers like the Commodore PET, Apple II, and Tandy
TRS-80, along with bioinformatics software like the GCG software suite [24] and DNASTAR [25],
another sequence manipulation suite capable of assembling and analyzing Sanger sequencing data.
Other sequence manipulation suites were developed to run on CP/M, Apple II, and Macintosh
computers [26] in the years 1984 and 1985. Free code copies of this software were o�ered on
demand by some developers. This propelled an upcoming software-sharing movement in the
programming world [27,28].

The free software movement, led by the GNU project, promoted open-source bioinformatics tools.
Major sequence databases (EMBL, GenBank, DDBJ) standardized data formatting and enabled global
sharing. Bioinformatics journals, like CABIOS, which is now known as Bioinformatics (Oxford, England)
accentuated computational methods’ importance. Desktop workstations with Unix-like systems and
scripting languages aided bioinformatics analyses, and scripting languages simpli�ed tool
development.

1990s: The genomics era and web-based bioinformatics

The genomics era began in the mid-1990s with the complete sequencing of the Haemophilus
in�uenzae genome [29], initiating genome-scale analyses. This milestone was followed by the
publication of the human genome at the beginning of the 21st century, which served as the de�nitive
catalyst for the genomic era [30]. This transformative event spurred the design and development of
several specialized Perl-based software to assemble whole-genome sequencing reads: PHRAP [31],
Celera Assembler [32] among others.

Tim Berners-Lee’s pioneering work at CERN in the early 1990s resulted in the World Wide Web,
transforming global communication and ushering in an era of unprecedented access to information.
With the advent of the internet, researchers gained a powerful platform to share and access vast
amounts of biological data e�ciently. This facilitated collaborative e�orts in biology and genomics,
leading to the establishment of foundational databases such as the EMBL Nucleotide Sequence Data



Library [33] and the GenBank database became the responsibility of the NCBI [34] in 1992. Also, the
famous NCBI website came online in 1994, featuring the e�cient pairwise alignment tool BLAST [35].
After that, the world saw the birth of major databases we still rely on today: Genomes (1995), PubMed
(1997), and Human Genome (1999) [36,37,38].

The proliferation of web-based resources transformed access to bioinformatics tools, democratizing
their availability and usability for researchers worldwide. Through the development of web platforms,
bioinformatics tools became more user-friendly and accessible. This shift enabled researchers to
interact with sophisticated analytical tools without needing extensive computational expertise or
access to specialized hardware. Consequently, the widespread adoption of web-based bioinformatics
resources facilitated broader participation in genomic and molecular research, accelerating scienti�c
discovery and collaboration on a global scale. Graphical web servers emerged as a convenient
alternative to traditional UNIX-based systems, simplifying data analysis without the need for complex
installations. The continued relevance of servers for scienti�c purposes is exempli�ed by the
AlphaFold Server which uses the latest AlphaFold 3 model [39], released in 2024, to provide highly
accurate biomolecular structure predictions in a uni�ed platform.

The internet facilitated the dissemination of scienti�c research through online publications,
challenging traditional print-based methods. Early initiatives like BLEND [40] paved the way for
internet-based scienti�c publishing by shedding insights into the potentials and obstacles associated
with using the internet for scienti�c publications. This study paved the way for leveraging the Internet
for both data set storage and dissemination, leading up to the establishment of preprint servers like
arXiv (est. 1991) [41] and bioRxiv (est. 2013) [42] which changed the way scienti�c �ndings are shared
and accessed. These platforms democratized access to scienti�c knowledge by enabling researchers
to share their work rapidly and openly, facilitating interdisciplinary collaborations and the cross-
pollination of ideas.

The experimental determination of the �rst three-dimensional structure of a protein, speci�cally,
myoglobin, occurred in 1958 via X-ray di�raction [4]. However, earlier groundwork by Pauling and
Corey with the publication of two articles in 1951 that reported the prediction of α-helices and β-
sheets [43] laid the foundation for predicting protein structures. Similar to advances in other
biological sciences, the utilization of computers has made it feasible to conduct calculations aimed at
predicting the secondary and tertiary structure of proteins, with varying levels of con�dence. This
capability has been notably enhanced by the development of fold recognition algorithms, also known
as threading algorithms [44,45]. However, proteins are dynamic entities, requiring advanced
biophysical models to describe their interactions and movements accurately. Force �elds have been
formulated to describe the interactions among atoms, enabling the introduction of tools for modeling
the molecular dynamics of proteins during the 1990s [46]. Used to study the behavior and interactions
of atoms and molecules over time, molecular dynamics simulations calculate the positions and
velocities of atoms based on physical principles. Despite the theoretical advancements and availability
of tools, executing molecular dynamics simulations remained challenging in practice due to the
substantial computational resources they demanded.

Graphical processing Units (GPUs) have made molecular dynamics more accessible [47], with
applications extending to other bioinformatics �elds requiring intensive computation. However, the
internet’s role in data dissemination, coupled with increasing computational power, has led to the
proliferation of ‘Big Data’ in bioinformatics.

2000s: High-throughput sequencing and big data

Second-generation sequencing technologies democratized high-throughput bioinformatics. For
example ‘454’ pyrosequencing, a high-throughput DNA sequencing technique played a signi�cant role



in advancing genomics research by enabling rapid and cost-e�ective sequencing of DNA samples,
particularly for applications such as whole-genome sequencing [48], but computational challenges
arose with increased data volumes. Decreasing sequencing costs resulted in more data being
generated, emphasizing data organization and accessibility. Specialized repositories and
standardization e�orts were needed to ensure data interoperability. High-performance computing
adaptation became vital to address the increased amounts of data within bioinformatics projects. The
surge in bioinformatics projects, accompanied by a vast in�ux of data, prompted adjustments from
funding bodies to accommodate the demand for high-performance computing resources and
collaborative initiatives.

While basic computer setups su�ce for some projects, others demand complex infrastructures and
substantial expertise. Government-sponsored entities like Compute Canada, New York State’s High-
Performance Computing Program, The European Technology Platform for High-Performance
Computing, and National Center for High-Performance Computing served researchers’ computational
needs. Companies like Amazon, Microsoft, and Google, among many others, o�er bioinformatics and
life sciences services, emphasizing the �eld’s importance.

Table 1. Organizations providing High-Performance Computing
Resources for Bioinformatics and Life Sciences

Organization Computing Resources

Compute Canada

Provides high-performance computing resources and support
services to researchers and innovators across Canada. They o�er
supercomputers, cloud platforms, data storage, and training
programs to advance scienti�c research and innovation in various
�elds.

New York State’s High-Performance
Computing Program

Provides researchers, businesses, and educational institutions with
access to high-performance computing (HPC) resources and expertise
to support their computational research and development e�orts.

The European Technology Platform for
High-Performance Computing

Fosters collaboration among industry, research, and academic
stakeholders to advance high-performance computing (HPC)
technology in Europe.

National Center for High-Performance
Computing

Facility for high-performance computing (HPC) resources including
large-scale computational science and engineering, cluster and grid
computing, middleware development, visualization and virtual reality,
data storage, networking, and HPC-related training.

National Center for Supercomputing
Applications

O�ers high-performance computing resources such as the Blue
Waters supercomputer, provides advanced data storage solutions,
data analysis, and visualization tools, and supports interdisciplinary
research in �elds such as astrophysics, climate modeling, and
genomics.

Oak Ridge Leadership Computing Facility

Provides supercomputing resources, such as the Summit
supercomputer, for scienti�c research, o�ers support services
including software development, data storage, and visualization, and
facilitates research in various �elds including climate science, biology,
and materials science.

Swiss National Supercomputing Centre

Provides high-performance computing systems including the Piz Daint
supercomputer, o�ers cloud computing services, data management,
and user support, and facilitates scienti�c research in areas such as
climate modeling, physics, and life sciences.

https://computecanada.ca/
https://esd.ny.gov/doing-business-ny/new-york-state-high-performance-computing-program
https://www.etp4hpc.eu/
https://www.nchc.org.tw/?langid=2


Organization Computing Resources

Barcelona Supercomputing Center

Provides access to MareNostrum, one of the most powerful
supercomputers in Europe, o�ers resources for high-performance
computing, data storage, and computational sciences, and supports
research in �elds including bioinformatics, computational biology,
and engineering.

Japan’s RIKEN Center for Computational
Science

Houses the Fugaku supercomputer, one of the world’s fastest
supercomputers, provides resources for computational science, data
processing, and arti�cial intelligence, and supports research in �elds
such as life sciences, materials science, and disaster prevention.

National Supercomputing Centre
Singapore

Provides high-performance computing resources and support
services, o�ers data storage, cloud computing, and software
development services, and supports research in �elds including
bioinformatics, environmental modeling, and smart cities.

Community computing platforms democratized participation and expanded bioinformatics research’s
reach. Platforms like BOINC enabled broad participation in bioinformatics. Experts can submit
computing tasks to BOINC, while non-experts and science enthusiasts can volunteer their computer
resources to process these tasks. Several life sciences projects are available through BOINC, including
protein-ligand docking, malaria simulations, and protein folding [49].

2010+: The present and future

The integration of computers into biology has ushered in a new era of research possibilities, allowing
for increasingly complex studies. While before, the focus was on individual genes or proteins,
advancements today enable the analysis of entire genomes or proteomes [50]. This shift toward a
holistic approach in biology is evident in disciplines like genomics, proteomics, and glycomics, which
have limited interconnection between them.

The next leap at the intersection of computing and the life sciences lies in modeling entire living
organisms and their environments simultaneously, integrating all molecular categories. This has
already been achieved in a whole cell model of Mycoplasma genitalium, in which all its genes,
products and their known metabolic interactions have been reconstructed [51]. Driven by
advancements in measurement techniques, improved computational performance and arti�cial
intelligence (AI) techniques, whole-cell modeling is increasingly becoming realistic and feasible. In
contrast to traditional bottom-up approaches relying on molecular interaction networks, a predictive
model has been developed for genome-wide phenotypes of budding yeast using deep learning [52].
The main applications of whole-cell modeling have been in producing useful substances and
discovering drugs, such as antimicrobials [53,54,55,56] since whole-cell modeling was �rst directed
toward unicellular organisms. Meanwhile, models of cultured human cells have also been developed,
which have found applications in cell di�erentiation and medical research [57]. The possibility of
modeling entire multicellular organisms may not be far o�, considering the rapid pace of
technological and computational advancements like arti�cial intelligence (AI) .

Arti�cial Intelligence (AI)

Arti�cial intelligence (AI) refers to a set of tools, techniques and paradigms that enable computers to
mimic human behavior and either replicate the decision-making process typically performed by
humans or exceed human performance in solving complex tasks independently or with minimal
human intervention [58]. AI is concerned with a variety of central problems, including knowledge
representation, reasoning, learning, planning, perception, and communication. It also refers to a



variety of tools and methods, including case-based reasoning, rule-based systems, genetic algorithms,
fuzzy models, and multi-agent systems [59]. Early AI research focused primarily on hard-coded
statements in formal languages, which a computer can then automatically reason about based on
logical inference rules. These computer systems known as expert systems, excelled in speci�c
domains but lacked adaptability. Over time, AI has evolved to include a variety of approaches, each
with its own strengths and weaknesses. For instance, expert systems are highly accurate within
narrow �elds but struggle with tasks outside their programmed knowledge. In contrast, machine
learning algorithms can generalize from data and adapt to new situations, though they require large
datasets and extensive training. Other AI techniques, such as deep learning, neural networks, and
natural language processing also o�er their own unique advantages and challenges.

Expert systems

Expert systems are a type of arti�cial intelligence (AI) that aims to replicate the decision-making
capabilities of human experts in speci�c domains. They are made of a knowledge base containing
domain-speci�c facts, rules, and heuristics, and an inference engine that applies logical reasoning to
this knowledge to draw conclusions or make decisions [60]. Users are typically able to input queries
and receive advice or recommendations through a simpli�ed user interface. The primary user action,
which involves pointing and clicking, is known as selecting [61].

An expert system for chemical analysis was developed in 1965 by AI researcher Edward Feigenbaum
and geneticist Joshua Lederberg. This system was originally known as Heuristic DENDRAL and later as
DENDRAL [62]. DENDRAL was developed to analyze molecular structures, particularly those containing
elements like carbon, hydrogen, and nitrogen, based on spectrographic data. It proposed molecular
structures for the compounds, with accuracy comparable to that of expert chemists.

Edward Shortli�e’s work on MYCIN [63] began in 1972 at Stanford University. MYCIN, an expert
system, was designed to assist physicians in diagnosing and selecting therapies for patients with
bacterial infections, particularly patients with meningitis. It used a rule-based system that analyzed
patient symptoms and medical history to suggest appropriate antibiotic treatments. MYCIN exhibited
pro�ciency equivalent to infectious disease doctors.

However, despite their capabilities, the paradigm faces several limitations as humans generally
struggle to explicitly articulate all their tacit knowledge that is required to perform complex tasks [64],
leading to challenges such as di�culty in extrapolation, handling out-of-distribution data, managing
uncertainty, and addressing biases. These limitations arise because expert systems heavily rely on
prede�ned rules and knowledge encoded by humans. Consequently, the involvement of humans in
specifying these parameters is essential but can also introduce limitations due to human cognitive
constraints and biases. In contrast, machine learning algorithms overcome some of these limitations
by learning from data, and making them more adaptable without relying heavily on explicit human
guidance.

Machine learning and Deep learning

Machine learning (ML) is a subset of AI that focuses on the development of algorithms and statistical
models that enable computers to perform tasks without being explicitly programmed to do so [65]. It
involves the use of data and algorithms to imitate the way humans learn, gradually improving the
system’s performance on a speci�c task over time through iterative learning processes. Machine
learning is e�ective for tasks such as classi�cation, regression, and clustering, particularly when they
involve high-dimensional data. These algorithms analyze data, identify patterns, and make predictions
or decisions without being explicitly programmed for each task.



Based on the given problem and the available data, there are many potential model and training
paradigms, three of the most prominent types of ML being: supervised learning [66], unsupervised
learning [67,68], and reinforcement learning [69]. The goal of machine learning is to develop an
output model that can make predictions or decisions based on input data. In supervised learning, the
model is trained on a labeled dataset, where each training example is paired with an output label. A
label is the desired output or result for a given piece of data. For example, in an image recognition
task, labels could be the names of objects in the images (e.g., “cat,” “dog,” “car”). In a spam detection
task, emails could be labeled as “spam” or “not spam.”. The goal is to learn a mapping from inputs to
outputs. Unsupervised learning involves training a model on data without labeled responses. The goal
is to uncover patterns or structures within the data. In reinforcement learning, an agent learns to
make decisions by interacting with an environment. The agent receives feedback in the form of
rewards or penalties based on its actions and learns to maximize cumulative rewards over time.

Depending on the learning task, the �eld o�ers various classes of ML algorithms, each of them coming
in multiple speci�cations and variants, including regression models, instance-based algorithms,
decision trees, Bayesian methods, and arti�cial neural networks, among others.

Arti�cial neural networks (ANNs) span all three major types of machine learning. ANNs are inspired by
biological systems and consist of interconnected processing units called neurons, with connections
akin to synapses in the human brain. Signals are processed based on thresholds set by activation
functions, and organized into layers for input, hidden, and output layers. Shallow machine learning
encompasses simpler ANNs and other algorithms, often being more interpretable than deep neural
networks. Deep neural networks, which have multiple hidden layers, perform complex calculations to
automatically discover patterns in data. This ability is known as deep learning64. Deep learning excels
with large, high-dimensional data like text, images, and videos, while shallow learning may outperform
with low-dimensional data or limited training data. Time series, image, and text data present various
application domains.

Figure 2: Relationship between statistics, arti�cial intelligence, expert systems, machine learning, deep learning and
large language models.



Automated model building in machine learning involves using input data for pattern identi�cation
relevant to the learning task. Shallow machine learning relies on prede�ned features such as pixel
values in images or word frequencies in text. For example, in image classi�cation, shallow learning
might rely on handcrafted features like color histograms or edge detectors. In contrast, deep learning
can operate directly on high-dimensional raw input data, such as the raw pixel values of an image or
the sequence of words in text. It automatically learns features at multiple levels of abstraction,
allowing it to capture patterns in the data without the need for manual feature engineering. For
instance, in image classi�cation with deep learning, the model learns to detect edges, shapes, and
textures from raw pixel data, resulting in improved accuracy [70].

Deep learning architectures often combine both aspects into end-to-end systems or extract features
for use in other learning subsystems. Various deep learning architectures have emerged, including
convolutional neural networks (CNNs) [71], recurrent neural networks (RNNs) [72], distributed
representations [73], autoencoders [74], generative adversarial neural networks (GANs) [75], among
others. CNNs excel in computer vision and speech recognition tasks, learning hierarchical features
essential for image recognition. RNNs specialize in sequential data structures like time-series data and
natural language processing (NLP), addressing the challenges of vanishing gradients through
advanced mechanisms like long short-term memory (LSTM) networks [76]. Distributed
representations, such as word embeddings, play a crucial role in NLP tasks by projecting language
entities into numerical representations, preserving semantic relationships between words.
Autoencoders provide dense feature representations and are applied for unsupervised feature
learning, dimensionality reduction, and anomaly detection. GANs, belonging to generative models,
learn probability distributions over training data to generate new data samples, using a generator-
discriminator framework in a non-cooperative game setting.

Generative AI and Transformers

Generative AI (GenAI) analyzes vast amounts of data, looking for patterns and relationships, then uses
these insights to create fresh, new content that mimics the original data [77]. It does this by leveraging
machine learning models, especially unsupervised and semi-supervised algorithms. There are three
popular techniques for implementing Generative AI: Generative Adversarial Networks (GANs),
Variational Autoencoders (VAEs), and Transformers.

Variational Autoencoders (VAEs) [78] �rst introduced by Diederik P. Kingma et al. in 2013 are
generative models in unsupervised machine learning that generate new data similar to the input data.
They consist of an encoder that compresses the input data into a lower-dimensional latent space by
producing parameters for a probability distribution (mean and variance). The decoder reconstructs
the data from this latent representation. The loss function, which combines reconstruction loss and
regularization loss (KL Divergence), ensures the output data is both accurate and diverse. VAEs are
used in applications like image generation, data imputation, anomaly detection, o�ering a �exible
framework for generating and understanding data despite some challenges in balancing the loss
components and achieving high-quality outputs [79,80,81].

In 2014, GANs [75] were proposed by researchers at the University of Montreal. GANs use two models
that work in tandem: One learns to generate a target output (like an image) and the other learns to
discriminate true data from the generator’s output. The generator tries to fool the discriminator, and
in the process learns to make more realistic outputs. The image generator StyleGAN [82] is based on
these types of models.

Di�usion models [83] were introduced a year later by researchers at Stanford University and the
University of California at Berkeley. By iteratively re�ning their output, these models learn to generate
new data samples that resemble samples in a training dataset and have been used to create realistic-



looking images. A di�usion model is at the heart of the text-to-image generation system Stable
Di�usion [84].

Recurrent neural networks (RNNs) and their variants like long short-term memory (LSTM) networks
are commonly used for sequential data processing tasks. However, these models su�er from
limitations such as vanishing gradients and ine�ciency in parallelization. Transformers revolutionized
the �eld with the ability to capture long-range dependencies in sequential data e�ciently and was �rst
reported in the seminal 2017 paper, “Attention is All You Need” [85]. The introduction of transformers,
with their superior performance and scalability, initiated a departure from RNNs. Transformers were
used to train the large language models (LLMs) that power ChatGPT [86].

The transformer architecture consists of an encoder and a decoder, each with multiple layers of self-
attention and feedforward neural networks. The self-attention mechanism enables the model to
assess the signi�cance of a piece of data, such as a word in a sentence, based on that word’s relations
with other words in the sentence. To preserve the ordering of the words and the meaning of the
sentence, the transformer incorporates positional bias to maintain the relative positions of words
within a sentence.

The transformer encoder-decoder architecture performs well at tasks like language translation. In a
language translation task, the model transforms a sentence by encoding inputs from one language
and then decoding outputs in another. The encoder processes the input sentence and creates a �xed-
size vector representation, which the decoder then uses to generate the output sentence. The
encoder-decoder employs both self-attention and cross-attention mechanisms, where self-attention is
applied to the decoder’s inputs, and cross-attention focuses on the encoder’s output.

A prominent example of the transformer encoder-decoder architecture is Google’s T5 (Text-to-Text
Transfer Transformer) [87], introduced in 2019. T5 can be �ne-tuned for various NLP tasks, including
language translation, question answering, and summarization.Real-world applications of the
transformer encoder-decoder architecture include Google Translate, which utilizes the T5 model for
translating text between languages, and Facebook’s M2M-10080, a multilingual machine translation
model capable of translating among 100 di�erent languages.



Figure 3: The encoder-decoder structure of the Transformer architecture. Adapted from “Attention Is All You Need”
Encoder-only models: Ideal for tasks requiring a deep understanding of the input, such as sentence classi�cation and
named entity recognition. Decoder-only models: Suited for generative tasks like text generation. Encoder-decoder
models (or sequence-to-sequence models): Best for generative tasks that depend on an input, such as translation or
summarization.

Transformer Encoder

The transformer encoder architecture is used for tasks such as text classi�cation, where the goal is to
categorize a piece of text into prede�ned categories. Text classi�cation tasks include determining the
sentiment of a piece of text, determining the topic and detecting if the text is spam. The encoder
processes a sequence of tokens and produces a �xed-size vector representation of the entire
sequence, which is then used for classi�cation. The most notable transformer encoder model is BERT
(Bidirectional Encoder Representations from Transformers) [88], introduced by Google in 2018. BERT
is pre-trained on large text datasets and can be �ne-tuned for a wide range of NLP tasks.

Unlike the encoder-decoder architecture, the transformer encoder focuses solely on the input
sequence without generating an output sequence and instead the output is a classi�cation task. It
uses the self-attention mechanism to identify the most relevant parts of the input for the given task.
Real-world applications of the transformer encoder architecture include sentiment analysis, where
models classify reviews as positive or negative, and email spam detection, where models classify
emails as spam or not.

Transformer Decoder

The transformer decoder architecture is tailored for tasks like language generation, where the model
creates a sequence of words based on an input prompt or context. The decoder takes a �xed-size
vector representation of the context and generates a sequence of words one at a time, with each
word depending on the previously generated words. A well-known transformer decoder model is GPT-
3 (Generative Pre-trained Transformer 3) [89], introduced by OpenAI in 2020. GPT-3 is a large
language model capable of generating human-like text across various styles and genres. ChatGPT,
which is based on the GPT-3 model, was o�cially launched by OpenAI in November 2020. It was a
signi�cant milestone in the development of large language models (LLMs), characterized by its ability
to generate human-like text across various styles and genres. Real-world applications of the
transformer decoder architecture include text generation, where models generate stories or articles
based on a given prompt, and chatbots, where models create natural and engaging responses to user
inputs.

Large Language Models (LLMs)

Large language models are machine learning models that can comprehend and generate human
language text. In the life sciences, LLMs such as GPT (Generative Pre-trained Transformer) and BERT,
have revolutionized natural language processing, enabling researchers to extract insights from vast
repositories of biomedical literature, accelerate drug discovery, and personalize patient care [90].

Large language models use transformer models and are trained using massive datasets — hence,
large. This enables them to recognize, translate, predict, or generate text or other content. They are
composed of multiple neural network layers – recurrent layers, feedforward layers, embedding layers,
and attention layers work in tandem to process the input text and generate output content.

There are three main kinds of large language models:



Generic or raw language models predict the next word based on the language in the training
data. These language models perform information retrieval tasks.
Instruction-tuned language models are trained to predict responses to the instructions given in
the input. This allows them to perform sentiment analysis, or to generate text or code.
Dialog-tuned language models are trained to have a dialog by predicting the next response.
Think of chatbots or conversational AI.

Before functioning, LLMs undergo two crucial processes: training and �ne-tuning. They are pre-
trained on massive textual datasets from sources like Wikipedia and GitHub, comprising trillions of
words to form a foundation model or a pre-trained model. This unsupervised learning stage allows
the model to understand word meanings, relationships, and contextual distinctions, such as
discerning whether “right” means “correct” or the opposite of “left.”. To perform speci�c tasks,
pretrained models undergo �ne-tuning, which tailors them to particular activities like translation. This
process optimizes task-speci�c performance. A related method, prompt-tuning, trains the model
using few-shot or zero-shot prompting. Few-shot prompting provides examples to teach the model
how to respond, while zero-shot prompting directly instructs the model on the task without examples.

LLMs serve various purposes:

Information retrieval: Used by search engines like Google and Bing to produce and communicate
answers conversationally.
Sentiment analysis: Used to evaluate the sentiment of textual data.
Text generation: Powers generative AI, such as ChatGPT, to create text based on prompts.
Code generation: Similar to text generation, LLMs can generate code by recognizing patterns.
Chatbots and conversational AI: Facilitate customer service interactions by interpreting and
responding to customer queries.

AI in the Life Sciences

The intersection of AI and the life sciences (AIxBio) has given rise to new capabilities where advanced
computational techniques are applied to understand the complexities of biological systems and
engineer novel solutions to pressing challenges in medicine and biotechnology [91]. The two primary
modern AI categories used in the life sciences are large language models (LLMs) and bio-AI tools.

LLM-based chatbots like ChatGPT are designed to process human language inputs and generate
output in human-like fashion. In the life sciences, ChatGPT can assist researchers by drafting and
editing scienti�c manuscripts, generating hypotheses, summarizing datasets, and retrieving
information from the scienti�c literature. LLM-based chatbots can also streamline literature reviews
and facilitate the comprehension of complex biological concepts.

As a general-purpose LLM, ChatGPT and its equivalents are trained on a broad range of text from the
internet. This results in models that function across topics and contexts. However, the generalist
nature comes at the cost of precision and depth required for highly specialized tasks. For example,
LLM-based chatbots can provide outputs with information with unfounded details, aiming to �ll
knowledge gaps. This behavior is known as “Confabulation”, and it can limit the utility of the tool.
Furthermore, ethical concerns related to biased outputs are often attributed to biases within the
training data.

Additionally, training and using general-purpose language models can be computationally expensive,
time-consuming, and resource and energy intensive. Given the cost of training general purpose LLMs
and their limitations, evaluations are essential for understanding their performance. Evaluations help
developers identify strengths and weaknesses of the model, and often measure generalizability of



models to real-world applications. This process can also identify biased or misleading model outputs.
Typically, models undergo evaluation on standardized benchmarks such as GLUE (General Language
Understanding Evaluation) [92], SuperGLUE [93], HellaSwag [94], TruthfulQA [95], and MMLU (Massive
Multitask Language Understanding) [96] using established metrics, as shown in Table 2.

Table 2. Common Benchmarks for LLMs

Benchmark Description Format of Task

MMLU
MMLU (Massive Multitask Language
Understanding) evaluates how well
the LLM can multitask

Multiple-choice

TruthfulQA
Measures truthfulness of model
responses

Generation, Multiple-choice

HellaSwag
Evaluates how well an LLM can
complete a sentence

Sentence completion

SuperGLUE Benchmark
Compares more challenging and
diverse tasks with GLUE, with
comprehensive human baselines

Sentence- and sentence-pair
classi�cation (main task), coreference
resolution and question answering

GLUE Benchmark

GLUE (General Language
Understanding Evaluation)
benchmark provides a standardized
set of diverse NLP tasks to evaluate
the e�ectiveness of di�erent
language models

Classi�cation and prediction

The behavior of LLMs can be modi�ed through model alignment, domain-speci�c pre-training, and
supervised �ne-tuning. These methods can be used to address limitations of generic LLMs, tailor
behavior to meet speci�c requirements, and infuse general knowledge into the LLMs. Domain-speci�c
language models, trained or �ne-tuned on speci�c datasets relevant to particular domains, o�er more
contextually accurate responses for speci�c domains. Evaluating domain-speci�c or �ne-tuned
models typically involves comparing their performance against a ground truth dataset if available. This
process is crucial because it ensures that the model performs as expected and generates the desired
outputs.

In the life sciences, specialized models can interpret complex biological data, provide detailed insights,
thereby enhancing both the accuracy and reliability of the information provided. These models are
known as scienti�c large language models (Sci-LLMs) [97].



Figure 4: AI-enabled tools used in the biological sciences; Large Language Models (LLMs) and Bio-AI.

Scienti�c Large Language Models (Sci-LLMs)

LLMs in the life sciences have been trained on natural language, molecular, protein, and genomic
sequence data. These LLMs are collectively known as Scienti�c Large Language Models (Sci-LLMs). Sci-
LLMs are specialized models designed to process and understand various types of scienti�c data.
They extend the capabilities of general LLMs to handle domain-speci�c tasks in biology, chemistry,
and other scienti�c �elds. Sci-LLMs in the biological �eld include Textual Scienti�c Large Language
Models (Text-Sci-LLMs), Protein Large Language Models (Pro-LLMs), and Genomic Large Language
Models (Gene-LLMs) [97].

Textual Scienti�c Large Language Models (Text-Sci-LLMs)

Text-Sci-LLMs are trained on vast amounts of scienti�c textual data, such as scienti�c publications.
Text-Sci-LLMs excel at understanding, generating, and interacting with written human language from
scienti�c domains. LLMs trained on vast, diverse datasets, such as BERT [88] and its variations which
have been �ne-tuned speci�cally on biological corpora with the encoder-only architecture, have
demonstrated signi�cant potential in natural language processing (NLP) tasks within biology. Models
initially trained on broad corpora such as Wikipedia and textbooks and then �ne-tuned on speci�c
biological NLP tasks, show substantial improvements in various downstream tasks including biological
terminology understanding, named entity recognition, text similarity, and relation extraction
[98,99,100,101,102].

GPT and its variants [89,103,104], with decoder-only architectures, have become dominant in the �eld
of biological NLP because they can generate textual information as an output. BioGPT [105], an



extension of GPT-2 [104], has been extensively �ne-tuned on biomedical literature, showcasing
remarkable performance in biomedical relation extraction and question answering. It also generates
coherent and �uent descriptions within the biomedical context. BioMedGPT-LM [106], incrementally
pre-trained on LLaMA2 [107], enables a comprehensive understanding of various biological modalities
and aligns them with natural language. BioGPT and BioMedGPT-LM are both specialized language
models designed for biomedical applications; however, BioGPT focuses on generating and
understanding biomedical literature, while BioMedGPT-LM integrates a broader range of tasks
including text generation, question answering, and classi�cation within the biomedical domain.

Capabilities Evaluation

The evaluation of LLMs often uses Bloom’s taxonomy [108,109], which includes six cognitive levels:

Table 3. Bloom’s Taxonomy

Cognitive Level Description Examples of Activities/Tasks

Remember Recall facts and basic concepts
List, de�ne, identify, memorize,
repeat, state

Understand Explain ideas or concepts
Describe, explain, interpret,
summarize, paraphrase, discuss

Apply
Use information or existing
knowledge in new contexts

Use, demonstrate, solve, implement,
execute, carry out

Analyze
Explore connections, causes, and
relationships among ideas

Di�erentiate, organize, relate,
compare, contrast, examine

Evaluate
Justify a decision or course of action
based on sound analysis

Judge, critique, recommend, justify,
assess, appraise

Create
Produce new or original work using
existing information

Design, assemble, construct, develop,
formulate, author

SciEval [110] has recently introduced a framework for evaluating scienti�c LLMs across four
dimensions: basic knowledge, knowledge application, scienti�c calculation, and research ability. These
dimensions are based on the cognitive domains in Bloom’s taxonomy. KnowEval [97] assesses the
depth of knowledge LLMs can grasp, aiming for human-level comprehension. KnowEval categorizes
Text-Sci-LLMs into Pre-college, College, and Post-college levels based on the complexity of scienti�c
knowledge.

Table 4. Categories for KnowEval

Category Description

Pre-college Level

This level covers fundamental concepts and principles,
aligning with the Remember and Understand stages of
Bloom’s taxonomy and the basic knowledge dimension of
SciEval. Evaluations focus on basic knowledge
comprehension, using benchmarks like MMLU [96] and C-
Eval [111]



Category Description

College Level

At this level, knowledge becomes more specialized and
abstract, requiring logical reasoning and proof. It
corresponds to the Apply and Analyze stages of Bloom’s
taxonomy and the knowledge application and scienti�c
calculation dimensions of SciEval. Evaluations like
PubMedQA [112] and SciQ [113] focus on this advanced
understanding.

Post-college Level

This level involves mastering current knowledge and
generating innovative ideas, aligning with the Evaluate
and Create stages of Bloom’s taxonomy and the research
ability dimension of SciEval. It requires capabilities
beyond standard question-answering, including
summarizing advancements and designing novel
experiments. Few benchmarks, such as a subset in the
SciEval dataset [110], assess these high-level capabilities.

Benchmarks for Text-Sci-LLMs

Table 5. Summary of Benchmarks for Text-Sci-LLMs

Benchmark Description Type

MMLU

O�ers a detailed and challenging
benchmark that tests the
comprehension and problem-solving
capabilities of LLMs across a wide
spectrum of tasks and subjects.

Multiple choice

C-Eval
Consists of 13,948 multi-choice
questions spanning 52 diverse
disciplines and four di�culty levels.

Multiple choice

AGIEval

Evaluates the general abilities of
foundation models in tasks pertinent
to human cognition and problem-
solving.

Multiple choice

ScienceQA

A dataset designed for question
answering in the scienti�c domain,
covering various scienti�c topics and
requiring reasoning over structured
and unstructured information.

Multiple choice / Question answering
(QA)

SciEval

A benchmark dataset for evaluating
language models in the scienti�c
domain, covering a range of tasks
related to scienti�c text
understanding and generation.

Multiple choice / Question answering
(QA)

Bioinfo-Bench-QA

A benchmark dataset focused on
question answering in the �eld of
bioinformatics, covering topics
related to biological information
processing and analysis.

Multiple choice



Benchmark Description Type

SciQ

A dataset designed for evaluating
language models in scienti�c question
answering tasks, covering various
scienti�c disciplines and requiring
both factual and reasoning-based
answers.

Multiple choice

ARC

A dataset that challenges models with
questions that require a mix of
comprehension and reasoning skills
across a wide range of topics,
including science.

Multiple choice

BLURB

A comprehensive set of datasets and
tasks designed to evaluate the
performance of natural language
processing (NLP) models speci�cally
in the biomedical domain.

Multiple NLP tasks

PubMedQA

A dataset designed for question
answering based on biomedical
literature available on PubMed,
aiming to evaluate models’ ability to
comprehend and extract information
from scienti�c articles.

True or False

Protein Large Language Models (Prot-LLMs).

Protein Large Language Models (Prot-LLMs) are trained on protein-related sequence data, including
amino acid sequences, protein folding patterns, and other biological information. As a result, they can
accurately predict protein structures, functions, and interactions. Prot-LLMs can be categorized into
three main types based on their architectures: encoder-only, decoder-only, and encoder-decoder
models, each suited for various protein research applications. For instance, encoder-only models are
primarily used for predicting protein functions or properties, while decoder-only models are mainly
employed for protein generation tasks.

Encoder-only models: Encoder-only models are a specialized form of the transformer architecture,
dedicated solely to understanding and encoding input sequences.The essence of an encoder-only
model revolves around extracting signi�cant context from input sequences. These models encode
protein sequences into �xed-length vectors for tasks like pattern recognition and prediction.
Techniques like the Pairwise Masked Language Model (PMLM) [114] and mixed-chunk attention aim to
capture co-evolutionary information and reduce complexity. Non-parametric models like ProteinNPT
[115] handle sparse labels and multitask learning. Some models, like ESM-GearNet [116] and LM-GVP
[117], integrate 3D structure information for better performance.

Decoder-only models: Utilizing the GPT [89] architecture, these models, such as ProGen [118] and
ProGen2 [119], are essential for controllable protein generation. They explore unseen regions of the
protein space while designing proteins with nature-like properties. Similar capabilities are exempli�ed
by models like RITA [120], PoET [121], and LM-Design [122].

Encoder-decoder models: Used for sequence-to-sequence tasks, these models, including ProstT5
[123] and pAbT5 [124] are adept at tasks where an input sequence is transformed into an output
sequence. A common example of a sequence-to-sequence task is machine translation, where a model
translates a sentence from one language to another. In the context of Prot-LLMs, sequence-to-
sequence tasks could involve tasks such as translating between protein sequences and structures.



They can incorporate Multiple Sequence Alignment (MSA) modules to improve sequence generation
and utilize reinforcement learning for structure-based design, as seen in Fold2Seq [125].

Capabilities Evaluation

Prot-LLMs are evaluated in three key areas: protein structure prediction, protein function prediction,
and protein sequence generation.

Protein Structure Prediction: Prot-LLMs can predict the 3D structure of proteins from their
sequences, which aids in understanding protein function, drug design, and biomedical research.
Based on the 3D structure of known proteins, prot-LLMs can predict the three-dimensional structure
of proteins based on an input sequence, which includes determining the atomic coordinates and the
spatial relationships between atoms. Encoder-based Prot-LLMs are used to extract sequence
information from the training data and predict tertiary and quaternary structures.

Protein Function Prediction: Prot-LLMs can predict the biological function of proteins and their
interactions with other biomolecules. These tasks can be grouped into several categories. Firstly,
protein classi�cation involves categorizing proteins based on their structure, function, or sequence
similarity. Prediction of protein-protein interactions focuses on identifying and forecasting
interactions crucial for various biological processes. Localization and homology detection tasks
include predicting a protein’s subcellular location and identifying distant relationships between
protein sequences. Spectral characteristics and stability prediction involve forecasting �uorescence
properties and stability under speci�c conditions, respectively. Furthermore, speci�c tasks such as 𝛽-
Lactamase activity prediction, solubility prediction, and mutation e�ect prediction focus on
understanding speci�c protein functions, compound solubility, and the e�ects of genetic mutations
on protein function, respectively. These tasks collectively contribute to explaining the complex
functions and behaviors of proteins in biological systems. Biological systems are inherently complex
and multifaceted, often requiring the simultaneous optimization of multiple properties. Unlike single-
objective optimization, which focuses on one speci�c goal, multi-objective optimization allows
researchers to consider and balance several objectives at once. This is particularly important in
protein function prediction, where factors such as stability, activity, solubility, and interaction with
other molecules need to be optimized concurrently. By providing a more comprehensive optimization
framework and utilizing techniques such as Pareto optimization, researchers can identify solutions
that o�er the best trade-o�s among di�erent objectives, rather than a single optimal solution for one
objective. multi-objective optimization can enhance the practical applicability of Prot-LLMs, leading to
more e�ective and e�cient solutions in understanding and manipulating protein functions.

Protein Sequence Generation: Prot-LLMs can propose amino acid sequences not found in nature
and with a predicted function, useful in drug design and enzyme engineering. It includes:

De novo protein design: Proposing protein sequences with a desired property that are not based
on existing proteins with some or all of the desired property. Autoregressive generative models,
such as the ProGen series, are commonly utilized for tasks involving the generation of protein
sequences.
Protein sequence optimization: proposing modi�cation to an existing protein sequence to alter
(i.e., optimize) its function or characteristic in an intended manner.

Benchmarks for Prot-LLMs

Table 6. Summary of Benchmarks for Prot-LLMs

Benchmark Description



Benchmark Description

CASP

CASP (Critical Assessment of Structure Prediction)
evaluates di�erent methods and algorithms for protein
structure prediction, providing a standard assessment for
progress in the �eld.

EC

EC (Enzyme Commission) dataset is used to classify
enzymes based on the chemical reactions they catalyze.
This system is used to evaluate the functional prediction
of proteins, speci�cally enzymes.

GO

GO (Gene Ontology) provides a framework for the
representation of gene and gene product attributes
across species. GO terms are used to annotate proteins
with their associated biological processes, cellular
components, and molecular functions.

CATH

CATH (Class, Architecture, Topology, Homologous
superfamily) is a protein structure classi�cation database
that organizes protein domains into a hierarchical
structure based on their folding patterns. It is used to
classify protein domains into these categories: Class,
Architecture, Topology, Homologous superfamily.

SCOP

SCOP (Structural Classi�cation of Proteins) classi�es
proteins based on their structural and evolutionary
relationships. SCOP benchmarks evaluate the ability of
computational methods to classify protein structures into
appropriate categories: Class, Fold, Superfamily, and
Family.

ProteinGym

ProteinGym is a benchmark suite designed for evaluating
the generalization capabilities of machine learning
models in protein sequence prediction tasks. It includes
various datasets and metrics to assess the performance
of models in predicting protein sequences and related
properties under di�erent conditions.

TAPE

TAPE (Task Assessing Protein Embeddings) is a
benchmark suite designed to evaluate the performance of
protein sequence embeddings learned by machine
learning models. It includes a variety of tasks, such as
secondary structure prediction, contact prediction, and
remote homology detection, to assess how well these
embeddings capture the underlying biological properties
of proteins.

Genomic Large Language Models (Gene-LLMs)

Gene-LLMs, specialized in genomic data, are trained to comprehend and predict genetic and genomic
aspects of biology. They analyze DNA sequences, interpret genetic variations, and aid in genetic
research, like identifying disease-related genetic markers or exploring evolutionary biology. Built on
the Transformer architecture, genomic LLMs e�ectively model nucleic acid sequence data, capturing
long-range dependencies for prediction and generation tasks. Through self-supervised learning on
genomic sequences, Gene-LLMs gradually grasp genome understanding. Once �ne-tuned or
contextually learned, they prove valuable for downstream tasks, enhancing accuracy and reducing
manual intervention.

Encoder-only models: With an encoder-only architecture for genomics, numerous signi�cant models
utilize the Transformer encoder to process gene sequences and extract meaningful patterns. Models



like SpliceBERT, DNABERT, DNABERT-2, iEnhancer-BERT [126,127,128,129], and others employ mask
training mechanisms to predict and complete masked gene sequences, achieving improved
performance in tasks such as promoter prediction and transcription factor binding site prediction.

For instance, MoDNA [130] adopts a BERT-like encoder with a unique stacked Generator-Discriminator
training paradigm, facilitating motif-oriented learning. GENA-LM [131] introduces encoder-based
foundational DNA language models capable of handling sequences up to 36,000 base pairs. The
Nucleotide-Transformer model [132], pre-trained on diverse human and species genomes, enhances
the prediction of molecular phenotypes from DNA sequences. EpiGePT [133] predicts genome-wide
epigenomics signals, o�ering insights into gene regulation. Uni-RNA [134] predicts RNA structures and
functions, useful in RNA research and drug development. Models like Enformer [135] and LOGO [136]
address the quadratic time complexity of attention mechanisms in handling long sequences, while
BioSeq-BLM [137] integrates traditional analysis methods with language models, marking
advancements in pre-training and �ne-tuning.

Decoder-only models: Decoder-only models, like GenSLMs [138] and DNAGPT [139], demonstrate
generative capabilities, capturing the evolutionary dynamics of viruses and enabling species
identi�cation and regulatory factor prediction. HyenaDNA [140] stands out for its exceptional ability to
e�ciently handle ultra-long DNA sequences while preserving single-nucleotide resolution. This unique
combination of features enables researchers to analyze and manipulate genetic data at an
unprecedented level of detail. Its capability to handle long sequences while maintaining single-
nucleotide resolution greatly enhances its utility in various genomic applications, representing a
signi�cant advancement in computational genomics.

Encoder-decoder models: Encoder-decoder models in genomics, such as ENBED [141], combine the
strengths of both components to compress and encode genomic data into meaningful
representations. These representations are then used by the decoder to generate sequences or make
predictions, enhancing bioinformatics research capabilities.

Capabilities Evaluation

Gene-LLMs undergo evaluation across four key domains: function prediction, structure prediction,
sequence generation, and sequence variation and evolution analysis.

Protein Function Prediction: Traditionally, gene function prediction relied on models trained on
speci�c sequences. With the advent of LLMs, pre-training on extensive genomic data followed by task-
speci�c �ne-tuning has enhanced accuracy and contextual understanding. Key subtasks include
promoter prediction, enhancer prediction, and binding site prediction, tackled by models like
DNABERT [127] and EpiGePT [133]

Structure Prediction: Leverages computational tools to identify and model biologically signi�cant
nucleic acid structures, aiding in the design of novel molecular architectures for nanotechnology and
synthetic biology. Recent advancements include predicting RNA three-dimensional structures directly
from sequences and designing sequences for prede�ned DNA and RNA nanostructures,
demonstrating that nucleic acid structure can be both predictable and controllable. Subtasks include
chromatin pro�le prediction and DNA/RNA-protein interaction prediction, addressed by models like
HyenaDNA [140] and TFBert [142].

Sequence Generation: Proposing arti�cial sequences resembling real biological ones is crucial for
bioinformatics, particularly for creating arti�cial human genomes serving as tools to safeguard genetic
privacy and reduce costs linked with genetic sample collection [143,144]. The generated data strives to
retain the utility of the source data by replicating most of its characteristics. Consequently, they could
serve as viable alternatives for many genomic databases that are either not publicly available or face



accessibility barriers. DNAGPT [139] excels in this task, generating arti�cial genomes covering regions
of single nucleotide polymorphisms (SNPs).

Sequence Variation and Evolution Analysis: Understanding biological sequence variation and
evolution is vital for uncovering the genetic basis of traits, disease, and evolutionary patterns. Models
like GenSLMs [138] and GPN-MSA [145] analyze the evolutionary landscape of genomes, focusing on
species-speci�c and whole-genome sequence alignments.

Benchmarks for Gene-LLMs

Table 7. Summary of Benchmarks for Gene-LLMs

Benchmark Description

CAGI5 Challenge Benchmark

The Critical Assessment of Genome Interpretation (CAGI)
is a benchmark designed to rigorously assess
computational methods in predicting a wide array of
genetic and genomic outcomes.

Protein-RNA Interaction Prediction Benchmark (Protein-
RNA)

A set of 37 machine learning (primarily deep learning)
methods for in vivo RNA-binding proteins RBP–RNA
interaction prediction. This benchmark systematically
evaluates a subset of 11 representative methods across
hundreds of CLIP-seq datasets and RBPs.

Nucleotide Transformer Benchmark (NT-Bench)

A comprehensive evaluation framework designed to
assess the performance of genomics foundational
models. This benchmark pits the Nucleotide Transformer
models against other prominent genomics models, such
as DNABERT, HyenaDNA (with both 1kb and 32kb context
lengths), and Enformer.

Multimodal Scienti�c Large Language Models (MM-Sci-LLMs)

Multimodal scienti�c large language models (MM-Sci-LLMs) possess the ability to process and
combine various types of scienti�c data, including text, molecules, and proteins, making them
indispensable for interdisciplinary research requiring insights from multiple domains. An emerging
research area, MM-Sci-LLMs utilize LLMs as their core to handle diverse data types e�ectively. These
models exhibit remarkable adaptability in incorporating text, images, audio, and other forms of
information, enabling comprehensive problem-solving across scienti�c domains, particularly in
biological sciences encompassing protein, molecular, and genomic studies.

Categorized into four distinct groups based on the speci�c modality they focus on, MM-Sci-LLMs
demonstrate specialized capabilities.

Table 8. Summary of MM-Sci-LLMs

Category Description
Encoder-only

models
Encoder-Decoder

models
Decoder-only

models



Category Description
Encoder-only

models
Encoder-Decoder

models
Decoder-only

models

Molecule-to-text

Leverage various
techniques like
multimodal
embedding and
cross-modal learning
to associate chemical
structures with
textual descriptions,
enhancing tasks such
as cross-modal
retrieval and
molecular property
prediction.

Text2Mol, KV-PLM,
MoMu

DrugChat, MolReGPT,
Text+Chem, ChatMol,
GIT-Mol

MoIET5, MolFM, GPT-
MoI

Protein-to-text
models

Utilize textual data
for protein function
prediction and
multimodal
representation
learning, enriching
protein annotation
and design by
integrating natural
language descriptions
with protein data.

ProTranslator,
ProtST-ProtBert

InstructionProtein
ProteinDT, Prot2Text, 
ProtST-ESM-1B,
ProtST-ESM-2

Protein-to-molecule
models 

Focus on linking
protein sequences
with molecular
information,
improving drug
discovery through
techniques like
adversarial networks
and contrastive
learning.

DrugCLIP DrugGPT
ChemBERTaLM,
DeepTarget

Comprehensive
models 

Integrate multiple
scienti�c modalities
to excel in diverse
tasks like biological
data analysis, and
material prediction,
leveraging advanced
multimodal learning
techniques to
support fundamental
science research.

BioTranslator

Galactica, ChatDrug, 
DARWIN-MDP,
BioMedGPT-10B, Mol-
Instructions   

BioT5

Capabilities Evaluation

MM-Sci-LLMs undergo evaluation focusing on three pivotal areas: cross-modal prediction, retrieval,
and generation.

Cross-Modal Prediction: This involves using multimodal models to predict the functionality of
biological entities like molecules, proteins, and genomes based on textual instructions. Models like
MoleculeSTM [146] and Mol-Instructions [147] integrate molecular structures and text data for
function prediction, which is crucial for bioinformatics and drug discovery.



Cross-Modal Retrieval: Involves retrieving information from one modality based on a query from
another modality. Key models like KV-PLM [148] and ProtST-ESM-1b [149] enable retrieving molecules,
proteins, or genes based on textual descriptions, aiding drug discovery and biological mechanism
understanding.

Cross-Modal Generation: Aims to create data in one modality based on data from another. Models
like Text2Mol [150] and ProteinDT [151] generate molecular information from text descriptions, while
models like Prot2Text [152] and ChemBERTaLM [153] convert protein sequences into detailed text
descriptions. This capability facilitates cohesive multi-modal data creation, bridging the gap between
di�erent modalities in scienti�c research.

Benchmarks for MM-Sci-LLMs

Table 9. Summary of Benchmarks for MM-Sci-LLMs

Benchmark Description

MoleculeNet

MoleculeNet is a large-scale benchmark for molecular
machine learning. It curates multiple public datasets,
establishes metrics for evaluation, and o�ers high-quality
open-source implementations of multiple previously
proposed molecular featurization and learning
algorithms.

MARCEL

MARCEL (MoleculAR Conformer Ensemble Learning)
provides a comprehensive platform for evaluating
learning from molecular conformer ensembles. It focuses
on diverse molecular conformer structures, marking a
signi�cant shift in molecular representation learning.

GuacaMol

GuacaMol is an evaluation framework designed for de
novo molecular design. It aims to generate molecules with
speci�c property pro�les through virtual design-make-test
cycles.

Our technical exploration is primarily con�ned to Transformer-based languages, excluding alternative
neural architectures like graph neural networks and di�usion models, despite their widespread
applications in protein folding. However, the concepts discussed in biological languages can be
extended to other scienti�c languages, such as molecular and mathematical languages.

Molecular large language models (Mol-LLMs) are specialized LLMs trained on molecular data, enabling
them to understand and predict the chemical properties and behaviors of molecules. This specialized
knowledge makes them invaluable tools in drug discovery, materials science, and the study of
complex chemical interactions.

Encoder-only Mol-LLMs, like SMILES-BERT [154], focus on understanding and interpreting input
molecules, making them ideal for tasks requiring a deep comprehension of molecular structures and
properties. SMILES-BERT, for instance, leverages the BERT architecture to interpret SMILES
representations of molecules.

Decoder-only Mol-LLMs, such as MolGPT [155] and SMILESGPT [156], use SMILES strings as input to
navigate the vast chemical space. These models are crucial in drug discovery and materials science,
enabling the synthesis of molecules with speci�c properties. MolGPT, which utilizes GPT for molecular
generation with conditional training for property optimization, excels in molecular modeling and drug
discovery by demonstrating strong control over multiple properties for accurate generation.



In encoder-decoder Mol-LLMs, encoders convert raw molecules into latent vectors, which decoders
then reconstruct into functional chemical structures. Most Transformer-based encoder-decoder
models use SMILES or SELFIES as inputs for the encoder, with outputs varying by task. For example, in
chemical reaction prediction, the decoder generates the anticipated outcomes for reactants. The
Molecular Transformer [157], a Transformer-based model for reaction prediction, e�ectively handles
complex, long-range sequence interactions.

Biological data with graph structures can be modeled in two primary ways: molecular structure-based
modeling and biological network-based modeling. In molecular structure-based modeling, atoms or
valid chemical substructures are used as nodes, and bonds serve as edges to construct the molecular
graph. Molecular graphs are extensively used for predicting molecular properties and designing new
molecules.

In biological network-based modeling, nodes represent various entities such as genes, diseases, or
RNAs, with edges indicating known associations between pairs of entities, such as miRNA–disease
interactions. This creates a relational network. Graph Neural Networks (GNNs) excel at extracting
information from graph structures, making them suitable for processing omics data in �elds such as
genomics, proteomics, RNomics, and radiomics. By applying GNNs to these omics data using the
aforementioned modeling methods, a variety of tasks can be performed, including molecular property
prediction, de novo molecular design, link prediction, and node classi�cation in biological networks.

Bio-AI Tools (BDTs)

Bio-AI tools, commonly referred to as biological design tools (BDTs) are computational tools that help
design proteins, viral vectors, or other biological agents. Traditional methods molecular biology like
site-directed mutagenesis (SDM) involve the deliberate alteration of speci�c nucleotide sequences in
DNA to create desired changes in the resulting protein. This process typically requires designing and
synthesizing speci�c DNA primers, followed by PCR ampli�cation and cloning steps to introduce the
mutated DNA into a host organism. While SDM allows for precise modi�cations at predetermined
sites, it can be time-consuming and labor-intensive, especially when multiple iterations are required to
achieve the desired outcome. Additionally, the success rate of SDM experiments can vary depending
on factors such as the e�ciency of DNA synthesis and the stability of the resulting mutant proteins.

Random mutagenesis, another traditional method, involves introducing random mutations
throughout the genome of an organism using techniques such as chemical mutagenesis or UV
irradiation. This approach generates a pool of mutants with diverse genetic variations, which are then
screened to identify individuals with desired phenotypic traits. While random mutagenesis can
uncover novel genetic variants and phenotypes, it lacks the precision and control o�ered by targeted
mutagenesis techniques like SDM. A related concept that enhances the utility of random mutagenesis
is directed evolution. Directed evolution is an iterative process where organisms undergo random
mutations, are tested against a screening process, and the best performers are selected for
subsequent rounds of mutation. This cycle of mutating, screening, and selecting can be analogized to
the training process of deep learning models. In deep learning, a model makes predictions based on
input data, receives feedback on the accuracy of these predictions, and then adjusts its parameters
through a process known as backpropagation.

In directed evolution, the organism’s genetic material is repeatedly altered and tested, much like a
model’s parameters are iteratively re�ned to improve performance. Each cycle of directed evolution
involves creating genetic diversity through random mutations, screening the resultant mutants for
desirable traits, and then selecting the top performers for the next round of mutations. This method
has been instrumental in �elds such as enzyme engineering, where it has led to the development of



proteins with enhanced or novel functions. However, It is resource-intensive, requiring signi�cant time
and high-throughput screening capabilities.

In contrast, BDTs can accelerate experimentation by suggesting optimized properties of biological
agents upfront, thereby potentially reducing the number of tests required to achieve desired
outcomes. While the speed of individual experiments may not change, the e�ciency of the overall
experimentation process is enhanced, as researchers may need to conduct fewer experiments to
reach the same or improved results [158]. Examples of BDTs include RFDi�usion [159], Protein MPNN
[160], and protein language models like ProGen2 [119] and Ankh [161]. These models can be
considered both Prot-LLMs and speci�c instances within the broader category of BDTs due to their
training and output characteristics.

A crucial di�erence between LLMs and BDTs is both the training data — as LLMs are trained on
natural language while BDTs are trained on biological data — and the output — LLMs typically
produce outputs in natural language while BDTs produce outputs in the form of biological sequences,
structures, and predictions. Although BDTs currently focus on creating sequences by optimizing for a
single function, they may eventually evolve to design complex proteins and enzymes with multiple
functions and properties. BDTs may eventually develop the capability to engineer whole organisms
optimized for various functions and characteristics, addressing a comprehensive range of biological
properties [162].

Of all the categories of AI-enabled BDTs, protein structural prediction tools have the highest relative
maturity. Protein structure prediction tools, commonly referred to as ‘folding tools,’ contribute to the
�eld by predicting a protein’s 3D structure, including its secondary, tertiary and quaternary structures
from its amino acid sequences. This prediction aids in understanding protein function and
interactions. Determining the precise structure of proteins, vital for their functions, has historically
posed signi�cant challenges in experimental biology [163], often requiring years of dedicated e�ort.
However, the landscape has shifted with the advent of AI, tailored to predict protein structures
directly from their amino acid sequences.

Notably, pioneering AI systems like AlphaFold [164] and RoseTTAFold [165] have emerged,
revolutionizing the �eld by drastically reducing structure determination times from months to mere
hours. While AlphaFold provides measured structures based on experimental data and computational
predictions, RoseTTAFold predicts structures solely through computational methods, sometimes
eliminating the need for experimental measurements. AlphaFold 2, released in 2021, marked a
signi�cant breakthrough for deep learning in biology by unveiling a vast array of previously unknown
protein structures. It quickly became a valuable tool for researchers working to understand everything
from cellular structures [166] to tuberculosis [167]. It also inspired the development of other
biological deep learning tools. Most notably, the biochemist David Baker and his team at the
University of Washington developed a competing algorithm in 2021 called RoseTTAFold, which, like
AlphaFold2, predicts protein structures from sequence data. Both systems have since been enhanced
with new features. RoseTTAFold Di�usion is designed to create new proteins that do not exist in
nature, while AlphaFold Multimer focuses on the interaction of multiple proteins. These
advancements have propelled the development of numerous complementary tools that contextualize
biochemical data, screen for protein interactions, and aid in experimental structure elucidation.
Furthermore, the predictions from these tools have been integrated into publicly accessible
databases, fostering widespread access and collaboration.

Proteins, intricate molecular machines honed by evolution, are built from a repertoire of 20 canonical
amino acids, intricately arranged to yield diverse structures crucial for biological functions.
Understanding a protein’s 3D structure is paramount, as it dictates its functional properties; for
instance, an enzyme’s precise folding enables e�ective catalysis. Thus, deciphering protein structures
not only determines their biological roles but also sheds light on disease-related mutations and their



impacts. A longstanding aspiration in structural biology has been the computational prediction of
protein structures, circumventing the laborious and expensive experimental methods. Milestones
such as the Critical Assessment of Structure Prediction (CASP) [168] have gauged progress in this
domain. AlphaFold’s breakthrough at the 13th CASP competition, and subsequent advancements like
AlphaFold2 and RoseTTAFold at 14th CASP competition, harnessed the pattern recognition prowess of
machine-learning algorithms, trained on vast structural data repositories like the Protein Data Bank
(PDB) [169]. These algorithms, unencumbered by prior exposure to certain proteins, demonstrated
remarkable accuracy in structure prediction.

Following the 14th CASP competition, a proliferation of AI-enabled structure predictors has emerged.
These predictors employ diverse strategies but share a common goal of understanding spatial
proximity among amino acids by tracing evolutionary relationships. Multiple sequence alignment
structure predictors (MSA-SPs), exempli�ed by AlphaFold 2 and RoseTTAFold, analyze co-evolutionary
signals gleaned from input sequences to predict structures. In contrast, protein language model
structure predictors (pLM-SPs), exempli�ed by ESMFold [170] and OmegaFold [171], embed
evolutionary insights directly into their algorithms, eliminating the need for explicit MSA generation.

AlphaFold 3 [172], a successor to previous AlphaFold models, was released in 2024 by Google
DeepMind. This new version extends its capabilities by predicting the structures of nearly all biological
molecules and modeling their interactions. While researchers have previously developed specialized
computational methods for modeling interactions between speci�c types of biological molecules,
AlphaFold 3 is the �rst system capable of predicting interactions between almost all molecular types
with state-of-the-art performance. The properties and functions of molecules in biological systems
typically depend on their interactions with other molecules. Experimental methods to understand
these interactions can take years and be prohibitively expensive. However, if these interactions can be
accurately estimated computationally, biological research can be signi�cantly accelerated. For
instance, researchers looking for a promising drug candidate that binds a speci�c protein site can use
computational systems like AlphaFold 3 to test potential drug molecules e�ciently.

Other subcategories of BDTs include:

Table 10. Other subcategories of BDTs

Category Description Examples

Protein sequence design tools

Also known as ‘inverse folding tools,’
predict the sequence of a protein with
a user-speci�ed structure and/or
functional property, such as binding
to a target. These tools play a crucial
role in designing proteins tailored to
speci�c requirements.

Rosetta, RoseTTAFold, RF Di�usion

Small molecule design tools

Designed to predict molecular
structures with speci�c pro�les, such
as generating drugs that provoke
desired biological responses while
maintaining acceptable
pharmacokinetic properties. These
tools are essential in drug discovery
and development processes.

REINVENT 4, Chemistry42



Category Description Examples

Vaccine design tools

Pivotal in predicting protective
antigens or vaccine subunits from the
protein or proteome of target
pathogens. By identifying vaccine
candidates, these tools contribute
signi�cantly to the development of
e�ective vaccines against infectious
diseases.

LinearDesign, VSeq-Toolkit

Viral vector design tools

Focus on predicting the amino acid
sequences of virus capsids with the
aim of optimizing them as delivery
vectors. These vectors are crucial in
gene therapy and vaccine
development, enabling the e�cient
delivery of therapeutic genes or
vaccine antigens into target cells.

VSeq-Toolkit

Genetic modi�cation tools

Analyze genetic sequences to identify
sequence features or optimize them
for speci�c purposes. These tools aid
in genetic engineering applications by
facilitating the modi�cation of DNA
sequences to achieve desired
outcomes.

OpenCRISPR-1, ZFDesign

Genome assembly tools

Play a vital role in assembling
genomes from multiple short reads
generated by DNA sequencing
technologies. These tools contribute
to genome sequencing projects by
reconstructing complete genome
sequences from fragmented data.

DeepConsensus

Toxicity prediction/detection tools

Designed to predict or detect the
molecular toxicity of given molecules
or metabolites. These tools are
valuable in drug safety assessment
and environmental toxicology, aiding
in the identi�cation of potentially
harmful substances.

TOXSCAPE, GENESCAPE

Pathogen property prediction tools

Predict or detect features of
pathogens, such as propensity for
zoonotic spillover or virulence. These
tools are crucial in infectious disease
surveillance and control, providing
insights into the behavior and
potential risks associated with
pathogens.

MP4

Host-pathogen interaction prediction
tools

Focus on predicting protein-protein
interactions between hosts and
pathogenic agents. By elucidating the
mechanisms of host-pathogen
interactions, these tools contribute to
understanding disease pathogenesis
and identifying potential therapeutic
targets.

HPIPred, deepHPI



Category Description Examples

Immunological system modeling tools

Replicate components of the human
immune system to predict immune
responses, such as T-cell receptor
epitope recognition. These tools aid in
vaccine design and immunotherapy
development by simulating immune
responses to pathogens or
therapeutic agents.

SIMMUNE

Experimental design/planning tools

Generate designs for experiments
based on prede�ned objectives,
optimizing experimental variables
and methods to achieve desired
outcomes. These tools streamline the
experimental process, improving
e�ciency and data quality.

The Experimental Design Assistant
(EDA)

Experimental simulation tools

Simulate and predict experimental
outcomes in silico, aiding in the
design and interpretation of
experiments. By providing insights
into potential experimental
outcomes, these tools inform
experimental planning and
hypothesis testing.

PhET, BioSimulators

Autonomous experimental platforms

Conduct experiments without human
intervention, utilizing laboratory
automation equipment to perform
physical tests, modeling, or data
mining. These platforms enhance
experimental throughput and
reproducibility, accelerating scienti�c
research and discovery.

BO algorithm with expected
Improvement based (EI-based) policy

Risks, Limitations and Future Directions

While recent advancements in AI have enabled rapid progress in the life sciences, it also has several
limitations and presents potential risks.

Risks and Limitations

Inaccurate outputs from AI models

The e�ectiveness of AI tools relies heavily on the quality of their algorithms and the data they are
trained on. When these algorithms contain errors or the datasets are biased or incomplete, the AI
models can produce inaccurate outputs. If the models and logic underlying an AI algorithm are
incorrect, the AI’s predictions or recommendations will also be incorrect. This can occur due to coding
errors, incorrect assumptions in the model design, or inadequate tuning of the model parameters. AI
models learn from the data they are trained on. If the training data is biased (e.g., over-represents
certain conditions or populations) or incomplete (e.g., missing critical variables or having insu�cient
diversity), the model’s outputs will re�ect these shortcomings. This means the AI could give incorrect
advice or predictions, which in biological experiments can lead to wasted time and resources as
researchers follow �awed directions. The inaccuracies can misguide researchers, causing them to



conduct experiments based on false premises. This not only wastes valuable resources like time,
money, and materials but can also delay scienti�c progress.

Development of harmful biological agents

AI models have the potential to assist in the creation and distribution of harmful biological agents.
They could, for example, enable an actor to design a biological agent with favorable properties [173]
and modify the agent’s delivery mechanism in a manner that optimizes infectious doses and ensures
environmental survival [174].This possibility raises signi�cant biosecurity concerns. Amateur users are
unlikely to utilize BDTs, but experts with malicious intent could leverage their scienti�c training and
speci�c AI models to design new pathogens, develop synthetic DNA strands that evade screening
measures, or enhance the e�ciency of bioweapon production [175]. As with any AI system, BDTs
depend on the quality of their training data, which can sometimes be limited by incompleteness or
unintentional biases. While BDTs have been used to digitally generate potentially risky genetic
sequences, research has yet to show if the synthesized sequences could be used to create harmful
biological agents. Establishing empirical baselines metrics is essential for conducting risk assessments
and tracking changes in risk over time. In AI applications within the life sciences, these metrics and
baselines are not yet de�ned. To assess this risk, we need to systematically evaluate current AI
systems’ abilities to generate new sequences versus enhancing existing ones.

Ethics in AI for Life Sciences

The integration of arti�cial intelligence (AI) in life sciences presents signi�cant ethical challenges that
must be addressed to ensure responsible and bene�cial use. Key ethical considerations include data
privacy, informed consent, and the potential for bias in AI algorithms. Ensuring data privacy is
paramount, as AI systems often require access to vast amounts of sensitive biological and medical
data. This necessitates robust data protection measures and compliance with legal standards to
prevent misuse and unauthorized access [176]. Informed consent is another critical issue, as
individuals must be fully aware of how their data will be used and the potential implications of AI-
driven analyses [177]. Additionally, AI algorithms can inadvertently perpetuate or exacerbate existing
biases if the training data is not representative of diverse populations, leading to inequitable
outcomes in healthcare and research [176]. Addressing these ethical concerns requires a multi-
faceted approach, including rigorous testing of AI systems, transparency in AI operations, and the
establishment of ethical guidelines and governance frameworks to guide the development and
deployment of AI in life sciences [178]. By prioritizing these ethical considerations, we can harness the
transformative potential of AI while safeguarding human rights and promoting equitable access to its
bene�ts.

Future Directions

Introduction of new benchmarks

Recent studies have highlighted the shortcomings of existing benchmarks in evaluating LLMs for
clinical applications [179,180]. Traditional benchmarks, which focus mainly on accuracy in medical
question-answering, fail to capture the full range of clinical skills necessary for LLMs [181]. Critics
argue that using human-centric standardized medical exams to evaluate LLMs is insu�cient, as
passing these tests does not re�ect the nuanced expertise required in real-world clinical settings
[181].

There is a growing consensus on the need for more comprehensive benchmarks. These new
benchmarks should assess capabilities such as sourcing information from authoritative medical



references, adapting to the evolving medical knowledge landscape, and clearly communicating
uncertainties [181,182]. To further enhance their relevance, benchmarks should include scenarios
that test an LLM’s performance in real-world applications and its ability to adapt to feedback from
clinicians while maintaining robustness. Given the sensitive nature of healthcare, these benchmarks
should evaluate factors like fairness, ethics, and equity, which are crucial yet challenging to quantify
[181]. By expanding benchmarks to encompass scienti�c domains, especially the biological domain,
we can ensure that LLMs are rigorously evaluated across a broad spectrum of applications, thereby
promoting their responsible and e�ective use in advancing scienti�c and medical knowledge.

Red, blue and violet teaming

Due to increasing concerns about the safety, security, and trustworthiness of Generative AI models,
both practitioners and regulators emphasize the importance of AI red-teaming [183]. Originally from
cybersecurity, red-teaming involves adopting an adversary’s perspective to �nd vulnerabilities. In AI,
this means simulating attacks on AI applications to identify weaknesses and develop preventive
measures [184]. For example, red teams can simulate backdoor attacks or data poisoning to test the
AI model’s defenses. Prompt injection, a common attack on generative AI models like LLMs, tricks the
model into producing harmful content. Red teams can also prompt AI systems to extract sensitive
information from training data.

Blue teaming, which focuses on defending against these simulated attacks, and purple teaming, which
combines both red and blue teams for a comprehensive security assessment [185]. However, as AI
systems continuously evolve, these strategies might be insu�cient, especially in critical sectors like
the life sciences [186].

Violet teaming goes further by pairing red and blue teams to build resilient systems that intend to
simultaneously minimize harm and maximize bene�t using the very technology that poses potential
security risks [187]. In the life sciences, this might involve using AI models to screen for harmful
sequences generated by the models themselves, preventing them from being produced and shared
with the end user.

Additionally, Machine Learning Security Operations (MLSecOps) could play a crucial role in ensuring
the safety of AI models in the life sciences by employing machine learning (ML) techniques to protect
against cyber threats and secure AI/ML models [188]. MLSecOps focuses on encrypting sensitive
genome data, detecting ransomware and Trojan attacks, and ensuring the integrity of ML algorithms
used in critical applications. It also addresses vulnerabilities in software and IoT devices within
biotechnology labs, enhances supply chain security, and mitigates biases in healthcare ML systems.

Conclusion

The integration of computing technologies into the life sciences has profoundly transformed the �eld,
enabling unprecedented advancements in biological research and applications. From the early days of
population genetics calculations in the 1950s to the sophisticated AI-driven models of today, the
evolution of computational tools has paralleled and propelled the growth of life sciences.

Historical Milestones and Technological Advancements

The journey began with the use of primitive computers for biological modeling, such as Alan Turing’s
work on morphogenesis and the MANIAC computer’s genetic code measurements. The 1960s and
1970s saw the rise of computational biology, driven by protein crystallography and the development



of bioinformatics software like COMPROTEIN. The advent of dynamic programming algorithms for
sequence alignment and the shift from protein to DNA analysis marked signi�cant milestones.

The Genomic Era and Beyond

The 1980s and 1990s were pivotal, with the development of gene targeting techniques, the
polymerase chain reaction (PCR), and the emergence of bioinformatics software suites. The
completion of the Haemophilus in�uenzae genome and the human genome project ushered in the
genomic era, leading to the creation of specialized software for whole-genome sequencing.

Arti�cial Intelligence and Machine Learning

The recent decades have witnessed the integration of arti�cial intelligence (AI) and machine learning
(ML) into life sciences, revolutionizing data analysis, drug discovery, and personalized medicine. AI
models, from expert systems like DENDRAL and MYCIN to modern deep learning architectures, have
enhanced our ability to predict protein structures, analyze genomic data, and design novel biological
entities.

Emerging Technologies and Future Directions

Emerging technologies such as cloud computing, big data analytics, and the Internet of Things (IoT)
are further enhancing the capabilities of life sciences research. Cloud-based high-performance
computing enables complex data analysis and reduces research cycles, while IoT facilitates real-time
data collection and patient monitoring.

Challenges and Ethical Considerations

Despite these advancements, challenges remain. The accuracy of AI models depends on the quality of
training data, and there are signi�cant ethical concerns regarding data privacy and the potential
misuse of AI in creating harmful biological agents. Addressing these challenges requires robust ethical
frameworks, continuous monitoring, and the development of explainable AI systems.

Altogether, the integration of computing in the life sciences has not only accelerated research but also
opened new frontiers in understanding and manipulating biological systems. As we move forward, the
synergy between computational technologies and life sciences will continue to drive innovation,
o�ering new solutions to complex biological problems and improving human health. The future
promises even greater advancements as we harness the power of AI, cloud computing, and other
emerging technologies to explore the intricacies of life at unprecedented scales.

Glossary

Algorithm: A step-by-step procedure or formula for solving a problem, often used in computer
programming and computational biology.

AlphaFold: An AI program developed by DeepMind that predicts protein structures with high
accuracy.

Autoencoders: A type of arti�cial neural network used to learn e�cient codings of unlabeled data.



Bioinformatics: The application of computer technology to the management and analysis of
biological data.

Computational Biology: A �eld that uses mathematical models, algorithms, and computational
techniques to understand and analyze biological systems.

CRISPR: A technology used for editing genomes, allowing researchers to alter DNA sequences and
modify gene function.

Deep Learning: A subset of machine learning involving neural networks with many layers.

DNA Sequencing: The process of determining the nucleic acid sequence – the order of nucleotides
in DNA.

Fourier Analysis: A mathematical technique used to transform signals between time (or spatial)
domain and frequency domain, applied in protein crystallography to determine structures.

Fixed-size vector representation: A numerical representation of a �xed length that encapsulates
the information or features extracted from a variable-length input. In machine learning and natural
language processing (NLP), �xed-size vector representations are commonly used to represent
textual or sequential data.

Genome: The complete set of genes or genetic material present in a cell or organism.

Genomics: The study of genomes, the complete set of DNA within an organism, including its
structure, function, evolution, and mapping.

Generative Adversarial Networks (GANs): A class of machine learning systems where two neural
networks contest with each other in a game.

Machine Learning (ML): A subset of arti�cial intelligence (AI) that involves the development of
algorithms that allow computers to learn from and make predictions based on data.

Maximum Likelihood Methods: Statistical methods for estimating the parameters of a model,
used in phylogenetic inference to determine the most likely tree structure.

Metagenomics: The study of genetic material recovered directly from environmental samples.

Multiple Sequence Alignment (MSA): A method used to align three or more biological sequences
to identify regions of similarity that may indicate functional, structural, or evolutionary
relationships.

Natural Language Processing (NLP): The ability of a computer program to understand human
language as it is spoken.

Needleman-Wunsch Algorithm: An algorithm used for pairwise sequence alignment that employs
dynamic programming to �nd the optimal alignment between two sequences.

Neural Networks: A series of algorithms that mimic the operations of a human brain to recognize
relationships between vast amounts of data.

Next-Generation Sequencing (NGS): High-throughput sequencing technologies that allow for
rapid sequencing of DNA or RNA samples.



PCR (Polymerase Chain Reaction): A method widely used in molecular biology to make several
copies of a speci�c DNA segment.

Phylogenetics: The study of the evolutionary history and relationships among individuals or
groups of organisms.

Proteomics: The large-scale study of proteins, particularly their structures and functions.

Reinforcement Learning: A type of machine learning where an agent learns to behave in an
environment by performing actions and seeing the results.

Systems Biology: An approach in biomedical research to understanding the larger picture by
putting its pieces together (holism instead of reductionism).

Transcriptomics: The study of the complete set of RNA transcripts produced by the genome.

Unsupervised Learning: A type of machine learning that looks for previously undetected patterns
in a data set with no pre-existing labels.
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